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Keywords: 
Data center emissions 
Dark data 
Data storage 
Environmental footprints 
Power consumption 

A B S T R A C T   

Internet data centers have received significant scientific, public, and media attention due to the challenges 
associated with their greenhouse gas, water, and land footprint. This resource greedy data services sector con
tinues to rapidly grow driven by data storage, data mining, and file sharing activities by a wide range of end- 
users. A fundamentally important question then arises; what impact does data storage have on the environ
ment and is it sustainable? Water is used extensively in data centers, both directly for liquid cooling and indi
rectly to generate electricity. Data centers house a huge number of servers, which consume a vast amount of 
energy to respond to information requests and store files and large amounts of resulting data. Here we examine 
the environmental footprint of global data storage utilizing extensive datasets from the latest global electricity 
generation mix to throw light on this data sustainability issue. The analysis also provides a broad perspective of 
carbon, water, and land footprints due to worldwide data storage to through some light on the real impact of data 
centers globally. The findings indicate that if not properly handled, the annual global carbon, water and land 
footprints resulting from storing dark data might approach 5.26 million tons, 41.65 Gigaliters, and 59.45 square 
kilometers, respectively.   

1. Introduction 

The development of information and communications technologies 
(ICT), such as the Internet of Things (IoT) sensors, cloud computing 
services, big data analytics, and the introduction of new smart devices 
and software applications, have generated exponential growth in the 
volumes of data generated over the past two decades (Corallo et al., 
2021). The ICT industry is fast evolving with the emergence of cloud 
computing, the expansion of 5G networks, artificial intelligence, and big 
data leading to the creation of huge amounts of data. Worldwide 
Internet Protocol (IP) traffic and Internet data grew more than 10-fold 
between 2010 and 2018, while global data center storage capacity 
increased by a factor of 25 (Shehabi et al., 2016). 

Modern ICT technologies make it very easy to generate large volumes 
of data, and because storage is quite cheap, there is a tendency to keep 

that data regardless of whether it has a point (i.e., synchrophasors and 
smart meters). Thus, companies are expected to have a high capacity for 
gathering and managing large amounts of data, both technologically and 
in terms of the skills and capabilities required from employees (Abdul
salam et al., 2019). Organizations recognize the significance of data and 
are investing extensively in data management as they move closer to 
data-driven business models. They continuously generate an over
whelming flow of data, during routine activities, from various sources 
(e.g., enterprise systems, machines, sensors, controllers, and 
demand-side digitalization). These data come in multiple formats (i.e., 
dark data, redundant, and critical) and are referred to herein as big data, 
which includes a wide range of information streams, log files, master 
data, and manually entered operator data (Nagorny et al., 2017). The 
term "dark data" refers to unstructured and inert content, which is 
fundamentally opposed to critical structured data. However, redundant 
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data is semi-structured information with a high risk of becoming dark 
(Imdad et al., 2020). 

Currently, data centers are considered one of the fastest-growing 
electricity consumers (Jones, 2018). According to the International 
Energy Agency, they consume around 1% of global electric power 
generation, which is about 205 TWh (IEA, 2020), with computing power 
accounting for 43% of this figure, power provision systems for another 
11% (Dayarathna et al., 2016), storage drives for about 11% excluding 
their share of cooling and other infrastructure energy consumption, 
networks for 3%, and cooling represent about 32% which highly benefits 
from access to natural resources for cooling (Shehabi et al., 2016). Data 
centers, as heavy energy consumers, are at the core of discussions over 
energy efficiency and carbon dioxide (CO2) emissions. However, reliable 
information on the extent of energy consumption, and underlying 
emissions, behind data center infrastructure, remains fragmented, 
difficult to acquire, and even more difficult to authenticate. This is 
because the rapid expansion and growth of data centers make reliable 
and recent data difficult to compile, and also because energy efficiency 
gains are outpaced (Koot and Wijnhoven, 2021). 

The digital revolution is coincident with global warming, and the 
increasing need to mitigate emissions and environmental stress. Along 
with the effects of climate change, many freshwaters and other natural 
systems are losing their ability to maintain ecological functions while 
also being forced to meet increasing agricultural and industrial de
mands. Depending on how data centers are powered, they indirectly 
consume a significant amount of water for electricity generation (She
habi et al., 2016), and some use direct water to cool servers and storage 
drives. For example, considering water deployed in utility dispatched 
power stations, Microsoft used 3.96 Gigalitres (GL) of water in 2020, up 
from 1.91 GL in 2017 (Microsoft, 2020), while Google utilized 21.5 GL 
in 2021, up from 11.62 GL in 2017 (Google, 2021). While some IT 
companies, such as Google and Amazon, have made significant strides 
toward reducing their environmental impact by investing in renewable 
energy (Amazon, 2022) and enhanced data storage (Jones, 2022), others 
are still trailing behind in the transition to green energy and storage 
optimization. Furthermore, it is currently impossible to precisely 
calculate emissions associated with data storage but the entire ICT sector 
is estimated to account for about 1.4% of global CO2 emissions due to 
the large amounts of energy they consume that are often 
carbon-intensive (Cunliff, 2020). 

The motivation for this analysis is that a portion of the actual 
physical center environmental footprint is associated with worldwide 
data storage. In the United States, for example, power consumption due 
to data center data storage was estimated to be at 14 TWh in 2020 
resulting in almost 6.5 million metric tons (MT) of CO2 emissions 
(Backup Works Storage Solutions, 2020). It is worth mentioning that 
dark data accounts for 54% of worldwide data storage, and the storage 
power required to hold and process dark data is estimated to emit 5.8 
MT of CO2 (Veritas, 2015). Nonetheless, one core challenge remains in 
the data center sectors and that is their commitment to achieving 
net-zero carbon emissions as part of their social and corporate re
sponsibilities. It should also be noted that they are not going to magic up 
some technologies to undo all the damage they are doing between now 
and when they invent this as yet unheard of net-zero device. Until now, 
much of the attention of the tech industry and large data center opera
tors have been on the transition to cleaner, renewable energy sources. 
While this is an important part of developing a more sustainable com
pany, it ignores one of the most significant characteristics of a green data 
center including data storage optimization and waste reduction. 

Renewable energy is a long term plan and not the only way to ach
ieve sustainability, and it comes with its own set of challenges (Al Kez 
et al., 2022). There is a high potential to accelerate progress toward 
sustainability by eliminating resource waste and ensuring that in
vestments in data storage infrastructure yield maximum value (Vries 
and Stoll, 2021). Minimizing dark data storage and employing modern 
tape systems, for example, can help to speed up progress toward 

sustainability by lowering energy use and CO2 emissions (Cooke et al., 
2021). However, the problem is before data centers commit their data to 
tape, they have to admit to themselves that the data is useless, and they 
will never want to look at it again, meaning that the most sustainable 
solution of all is to delete it. An important question arises: what impact 
does power consumption due to data storage have on the environment 
and is it sustainable? In this context, this research uses a fundamental 
proxy variable-based footprint assessment method to radically deter
mine CO2, water, and land footprints associated with data storage. The 
main contributions of this research are the following:  

• Provide an estimation of carbon, water, and land footprints due to 
data storage using datasets for the most recent global electricity 
generation mix.  

• Differentiate between normal data, critical data, abandoned data, 
and dark data.  

• Determine the environmental footprint deviation for twelve data 
center dominant countries for global parameters. 

The rest of the paper is organized as follows: Section 2 presents an 
overview of global ICT environmental footprints and the research gap 
within the literature. The data hierarchy of need and classification of 
data types are given in Section 3. This is followed by the proposed 
methodology to assess the environmental footprint of data storage. 
Analysis and results are illustrated in Section 5. Discussions and rec
ommendations are provided in Section 6. Finally, Section 7 concludes 
the work with some remarkable future directions. 

2. Literature review 

ICT, like all sectors, confronts obstacles in its efforts to reduce carbon 
emissions. It also allows other industries to become more energy effi
cient. Our previous analysis examined the possible system benefits of 
integrating data centers with variable renewable energy technologies to 
support grid services (Al Kez et al., 2020) while facilitating secure 
integration of higher levels of intermittent renewable systems (Al Kez 
et al., 2021). Our results demonstrated that instead of simply being a 
power load, data center businesses might ease the transition towards 
renewable electricity by utilizing the potential for demand response to 
match data center demand with times when high renewable power is 
generated. As this reduces the environmental footprint associated with 
total ICT energy usage, this industry can solve energy and environ
mental challenges. Despite these capabilities, ICT industries have not yet 
been actively deployed to provide grid flexibilities and thus still have a 
considerable environmental impact (Bloomberg, 2021). 

The global carbon footprint of Internet use ranges from 28 to 63 g (g) 
CO2 equivalent per Gigabyte (GB), whereas the water and land foot
prints are 0.1–35 L (L)/GB and 0.7–20 cm2/GB, respectively (Obringer 
et al., 2021). In 2015, a water footprint of data centers up to 205 L/GB 
was reported by (Ristic et al., 2015). This includes footprints associated 
with both transmission and data storage globally in a data center. 
However, research by (Obringer et al., 2021) identified that this number 
has reduced almost by 150% during five years to around 35 L/GB based 
on the global energy mix in 2018. Data storage alone has been reported 
to have 5 L/GB water footprints (Obringer et al., 2021). The significant 
reduction in the environmental footprints of data centers was justified 
and attributed to advancements and efficiency improvements in servers, 
storage devices, network switches, and data center infrastructure (Sid
dik et al., 2021). Another study by (Belkhir and Elmeligi, 2018) reported 
the differences between annual global CO2 emissions from ICT and data 
center industries over the last ten years, as shown in Table 1. In contrast 
to what was previously claimed, the data in the table highlights a 
considerable increase in the amount of CO2 emissions associated with 
both the ICT and data centers in recent years. However, a report by the 
Internet data center corporation indicated that CO2 emissions in 2020 
would be far lower, at 230 MT, than those in Table 1 (Cooke et al., 
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2021). 
In fact, such considerable discrepancies in environmental footprints 

lie in the scope and the underlying assumptions used in previous 
research. This is because experts make assumptions and build models to 
work with energy consumption figures due to business competitive 
concerns, lack of knowledge, technical challenges, or lack of trans
parency. Global figures are also extremely subject to geographical re
gion considerations. Researchers looked at data center energy usage and 
performance from a variety of perspectives, including computer power, 
cooling, and network-related issues. Many businesses continue to use 
PUE based assessment methodologies. However, assessing a data cen
ter’s long-term sustainability necessitates looking at a variety of factors, 
some of which are difficult to quantify. As an example, studies by (Aslan 
et al., 2018) and (Malmodin and Lunden, 2018) have estimated the CO2 
footprint of data storage, transmission, and consumption, while the 
footprint associated with storing dark data is not considered. It is also to 
be noted that the CO2 footprint alone cannot provide a complete picture 
of the environmental impact of Internet use (Ristic et al., 2019). Despite 
the importance of the environmental challenges, only a few studies 
consider the complete picture of CO2, water, and land footprints of data 
centers (Obringer et al., 2021). However, the environmental footprints 
associated with dark data storage are once again ignored. 

The challenges associated with data management (i.e., the process of 
acquiring and storing data, as well as preparing and retrieving it for 
analysis) have been reported previously in terms of data governance, 
data and information sharing, operational costs, data ownership, pri
vacy, and security (Sivarajah et al., 2017). However, now another 
consequence has been brought to light; according to Veritas (2015), the 
energy required to store dark data contributes significantly to the carbon 
footprints of the data center. Furthermore, there is also a need to revise 
earlier energy estimates regularly, given technological and efficiency 
advancements in the Internet industry, as well as shifting energy supply 
portfolios around the world. Thus, the main objective of this research is 
to fill this gap through a rough estimation of three major environmental 
footprints from a broader perspective (i.e., CO2 footprint, water foot
print, and land footprint) associated with different data storage types (i. 
e., dark data, redundant data, and critical data). 

3. Data hierarchy of needs 

The data science hierarchy of needs includes data collection, trans
port, and storage, data exploration and manipulation, aggregation and 
labeling, learning and optimization, and artificial intelligence and deep 
learning. The data science pyramid is inspired by Maslow’s hierarchy of 
needs, and it allows data to pass through many phases to locate useful 
data to act on, as illustrated in Fig. 1 (Renze, 2019). 

First, to adopt Maslow’s concept of working from the ground up, 
companies must begin with data collecting. It is essential to know what 
type of data they require among the big data. For every data-driven 
company, this is a vital step at the base of the hierarchy and the most 
basic requirement. It establishes the foundation for the company’s 
higher and better objectives (Rotem-Gal-Oz, 2015). Basic data gathering 
and operations start with documenting transactions, reporting faults, 
and digitizing analog data. To build a strong dataset, firms must look at 
the data coming in from sensors and the methods important user in
teractions are being documented before advancing to the next pyramid 

level. 
The data must then be relocated to a secure and easily accessible 

location to help the researchers to find the information they need. A 
corporation should now be able to move on to securing information 
flow, structure, and storage, as well as tracking how data moves through 
the system, with accurate, reliable, and complete data collection. Data 
sets are often chaotic; therefore, data scientists must find a means to 
verify that the data they are collecting is properly formatted and ready 
to be analyzed (Hashem et al., 2015). The data must be structured and 
converted into a format that can be analyzed. This begins with funda
mental data-organization tasks such as data transformation, cleaning, 
and storage. 

The big data appears to be chaotic, but it can be used to uncover 
hidden insights through exploration. The exploration and data analysis 
via anomaly identification and data cleaning is the next step in the data 
science hierarchy of needs pyramid to make the data usable. This is a 
crucial first step toward a more robust data organization at the following 
levels. If the outcomes are not up to standard, it might be time to revisit 
the foundation and refocus on gathering methods. It generally begins 
with basic data analysis tools, such as reports and dashboards. 

Firms must use data to develop insights that drive business choices 
once it has been acquired, stored, converted, and analyzed. Descriptive, 
diagnostic, predictive, and prescriptive data analytics are four forms of 
data analytics that can aid in the development of insights. This typically 
entails incorporating increasingly complex types of data analysis into 
their data-science pipelines, such as predictive analytics, prescriptive 
analytics, and machine learning. This step helps understand what is 
occurring in the company and why it is happening. In fact, there are lots 
of software and hardware technologies in use in data centers that predict 
whether data is likely to be accessed or not and move data up and now a 
hierarchy depending on if it needs to be “snappy” or if the end user is 
unlikely to notice if it takes a while to be retrieved (Zhu et al., 2019). 

Table 1 
Annual worldwide ICT, data centers, and communication network carbon footprint.  

Global carbon footprints in (MT CO2e) 

Years 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
Data centers 159 179 200 224 251 281 315 352 395 442 495 
Communication network 138 152 167 179 192 205 218 230 243 256 269 
ICT sector 610 700 800 850 900 950 1000 1050 1150 1210 1300 
ICT in percentage of global footprint (%) 1.85 2.1 2.27 2.3 2.5 2.73 2.83 3 3.23 3.45 3.7  

Fig. 1. Data hierarchy of needs.  
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This is generally obfuscated by the customers unless they want to get 
into higher tier plans and specific service level agreements (SLA). 

Finally, to close the loop and eliminate the human from the process, 
data-science operations must be automated to act upon the data. This 
approach employs artificial intelligence, deep learning, and reinforce
ment learning to reduce human involvement costs while increasing 
revenue. Here the worst form of dark data might be that at the bottom 
which simply exists and does not even get any further processing. The 
best type of dark data might be that which was once acted upon but now 
is of no relevance ever again. 

3.1. Classification of big data 

Big data is defined as data with greater diversity, emerging in larger 
volumes, and with higher velocity, which is also referred to as the three 
Vs (Oracle, 2022). The details of these three aspects are as follow: 1) The 
numerous different sorts of data that are available are referred to as 
variety. Traditional data formats were well-structured and fit into a 
relational database with ease. With the rise of big data, new unstruc
tured data kinds have emerged. To derive meaning and support meta
data, unstructured and semistructured data types including text, audio, 
and video require further preprocessing. 2) The rate at which data is 
received and (perhaps) acted on is referred to as velocity. In most cases, 
data is streamed directly into memory rather than being written to a 
disc. 3) It is important to consider the amount of data available. Data 
centers have to process a lot of low-density, unstructured data with big 
data. This can be unvalued data like social media data feeds, click
streams on a website or mobile app, or sensor-enabled equipment. This 
might be tens of gigabytes of data for certain firms. Over the last few 
years, two more Vs have appeared: value and veracity which refer to the 
process of rapidly generating and identifying enormous hidden values 
from vast datasets of various forms (Zhang and Yang, 2021). 

Classification of big data into several types is essential to analyzing 
their features due to the availability of a vast amount of data in the 
cloud. They are typically categorized based on four different factors 
including, source of data, the content of data, data store, and data 
staging and processing, as shown in Fig. 2 (Hashem et al., 2015). Each of 
these categories has certain unique characteristics and levels of 
complexity, but the data content is the main focus of this study. Exam
ples of data sources are Internet data, sensing, and any repositories of 
transnational information that range from unstructured to highly 

structured and store its content in a variety of formats. 
The massive hadron collider (LHC) is probably the most famous big 

data example. The LHC program initiated two general-purpose experi
ments, ATLAS and CMS, to search for the Higgs boson. One of the most 
difficult aspects of these experiments is managing and analyzing a large 
volume of data from the High Energy Physics (HEP) detectors. Firms are 
confronted with a concrete case of Big Data in the LHC era: the LHC 
produces 40 million collisions of protons every second, or around 15 
trillion collisions per year (Innovation News Network, 2021). Every 
collision produces one Mbyte of data, or 2000 Tbytes (TB), 2 Petabytes 
(PB) of data each year for the ATLAS detector alone. Furthermore, a 
comparable amount of simulated data derived from various theoretical 
models is required for comparison with the ’real data’ gained from tests. 
After that, in order to obtain physics results, all of these data must be run 
through analytic algorithms. Finally, although there are hundreds of 
good big data initiatives in science and industry, advertising and med
ical research remain hot topics (Au-Yong-Oliveira et al., 2021). 

3.2. Data storage types 

It is projected that the amount of Global Datasphere (i.e., the sum
mation of all data created, captured, or replicated) to grow 5-fold from 
33 Zettabytes (ZB) in 2018 to 175 ZB by 2025 (Reinsel et al., 2018). 
Despite the development of new data storage technologies, data volumes 
are roughly doubling every two years. Organizations are still struggling 
to keep up with their data and find effective storage solutions. Cloud 
computing has opened up even more options for big data. Developers 
may easily spin up ad hoc clusters to test a fraction of data in the cloud, 
which provides genuinely elastic scalability. With its ability to present 
huge volumes of data in a way that makes analytics rapid and thorough, 
graph databases are also becoming more essential. However, simply 
storing the data is insufficient. To be valuable, data must be used, and 
this is dependent on curation. It takes a lot of effort to get clean struc
tured data or data that is relevant to the customer and arranged in a way 
that allows for useful analysis. This large volume of data has to be 
classified according to the type of data produced and its information. 
The big data content is mainly classified as critical, redundant, and dark 
data, as shown in Fig. 3. 

3.2.1. Critical data 
Critical structured business data is required information used to run a 

Fig. 2. The classifications of big data.  
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firm, guaranteeing that objectives are accomplished and allowing it to 
develop every year. The universe of big data is mainly concerned with 
critical data or data that is readily accessible to the user. The content of 
this type of data can be managed and used to enhance record manage
ment, maintain uniformity in filing, and ease access, storage, protection, 
and retention. Structured data are frequently maintained using struc
tured query language, a programming language designed for handling 
and querying data in relational database management systems (Hashem 
et al., 2015). A study demonstrated by (Imdad et al., 2020) that orga
nizations utilize less than 50% of their structured critical data for 
business analytics and decision making, while the rest of their structured 
data has the potential to become dark as well. 

3.2.2. Redundant data 
Redundant data is semi-structured data that may no longer be used 

or is irrelevant to the companies’ data requirements. Semi-structured 
data is information that does not adhere to a traditional database 
structure. Structured data that is not arranged in relational database 
models is considered semi-structured data (Hashem et al., 2015). Using a 
fixed file format to capture semi-structured data for analysis is not the 
same as using a fixed file format to capture semi-structured data. As a 
result, acquiring semi-structured data necessitates the application of 
complicated rules that dynamically determine the next step after the 
data has been captured. Organizations store large volumes of data in 
semi-structured formats (i.e., CSV files, relational, and databases), and 
publish data on the Web in other semi-structured formats (i.e., XML, 
JSON, etc.). This type of data needs mapping languages and engines to 
modify, integrate, and feed data into knowledge graphs (Ryen et al., 
2022). 

3.2.3. Dark data 
Finally, dark and abandoned data storage contains information that 

has been gathered or stored but not used to generate insights for decision 
making (e.g., data derived by synchrophasors). That said, dark data is 
generally defined as the scarcity of information that an organization 
develops and uses only once before being hidden among a massive and 
disorganized collection of other content assets (Goodwin, 2019). Dark 
data is untapped, buried, or undigested data for businesses since it has 
little value potential. Big data information assets are acquired, analyzed, 
and stored in normal business operations, particularly concerning digital 
transformation efforts, but are largely impractical for other uses. Busi
ness relationship management and analytics are also two examples. All 
this information will be aggregated over time as frequently retained by 

businesses for regulatory reasons, and it then lies inactive in storage 
hardware archives. 

Unstructured data is also becoming more prevalent as a result of 
customer behavior in converting text, pictures, or music into a digital 
format for computer processing, social networking, search engine in
quiries, and real-time streaming (Goodwin, 2019). This could also be 
due to the other tools users are used to, such as Instagram, TikTok, 
Facebook, and YouTube, which all pull content from a huge online sea 
instead of placing it within a structured hierarchy. Furthermore, on the 
university computers, there are hundreds of unorganized student files, 
and many of his items may contain enormous amounts of unstructured 
data. All of these assist in creating a large amount of digital data that 
needs to be stored and may not be accessed later. Although the terms 
data and information are frequently used interchangeably, data trans
forms into information when seen in context or analyzed to provide 
insights. 

With the emergence of IoT, every industrial equipment (i.e., smart
phones and smartwatches) utilized today can have data-gathering chips 
installed into it and broadcast all data via the Internet. The IoT has the 
potential to create hidden information in logs, metadata, text fields and 
documents, video, audio, and photographs. About 90% of generated 
data by IoT devices is never evaluated (Gimpel and Alter, 2021), and up 
to 60% of that data loses value within milliseconds of generation (Cor
allo et al., 2021). Storing such a high percentage of concealed data may 
be difficult to analyze as dark data far outnumbers the amount of visible 
data. While visible data may be easily accessed in databases, dark data 
requires a more sophisticated extraction process before being actively 
utilized. Storing and safeguarding such data usually comes at a higher 
cost and, in some cases, a higher risk than the data itself (Schembera and 
Duran, 2020). This is because part of this data might become more 
valuable and a target of theft and malware attacks (i.e., ransomware) 
(Goodwin, 2019). 

Fig. 4 displays how anything transferred over the Internet has the 
potential to become unstructured dark data. Dark data is the most 
important subset of unstructured, accounting for 90% of all data (Gim
pel and Alter, 2021). Yet less than 1% of it is ever accessed again (Imdad 
et al., 2020) for business analytics and decision making. Another anal
ysis conducted by (Veritas, 2015) reveals that an average of 54% of 
stored data by worldwide enterprises is classified as dark since in
dividuals in charge of it are unaware of its content and usefulness. Ac
cording to a study conducted at the Stuttgart high-performance 
computing center, more than 49% of their user accounts are idle and 
classed as dark (Schembera and Duran, 2020). The annual CO2 

Fig. 3. General content format of big data classifications.  
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emissions from preserving this type of data are estimated to be around 
5.8 MT (Veritas, 2015). To put things in perspective, an analysis by 
(Bayern, 2020) illustrates that 91 ZB of dark data would exist in the next 
five years, which is more than four times the quantity currently held. A 
large portion of this needs to be stored requiring significant storage 
space unless data users and organizations adjust their activities. 

For example, consider a university with hundreds of modules and 
thousands of student coursework assignments produced each year. 
Previously, these were printed on paper, marked, and then either 
returned to the student or discarded or not for decades forever. When 
these became electronic, they were marked and most likely removed for 
a short period of time. This was most likely done through a custom web 
server at the institution. Then the storage went "cloud," and hard disk 
drive (HDD) prices are so cheap that no one ever deletes anything 
anymore. Coursework assignments from a decade ago may still exist and 
that is just the cloud copies. There are extra copies on local computers, 
email inboxes, and USB sticks. This means writing once, reading once, 
and never erasing the data. In contrast to the 1990s, institutions had to 
erase things because HDDs were so expensive and easy to fill up. 

3.3. Data storage power consumption 

Research by (Goodwin, 2019) demonstrated that worldwide enter
prise data storage is rising at a 27% compound annual growth rate 
(CAGR). As indicated in Fig. 5, global data storage will reach over 11 ZB 
per year by 2025, up from 2.6 ZB in 2018, and will double every two to 
three years (Cooke et al., 2021) and (Reinsel et al., 2018). This indicates 
that the quantity of information stored in data centers is predicted to 
surge by 27% every year until 2025, while energy usage grew by 31% 
between 2017 and 2020. The majority of this data is eventually stored 
on traditional disc, cloud, or tape, necessitating enormous storage and 
management systems. Traditional storage solutions keep data on local 
physical discs at the client’s main location, which is characterized by 
fast, manual security set up by the user, and can be recovered without 
accessibility issues (Benadjila et al., 2022). Data is mainly stored by 
users on disk-based technology, which is also used for data management 
and integration into the software. On the other hand, the cloud affords 
large storage capacity for users and access to data through separate 
geographical locations (Jalil et al., 2022). Additionally, it leverages the 

network to store the data on a service provider-owned remote server. 
With an internet connection, storage is simply available and more 
effective and simple to set up than traditional ones in terms of data se
curity possibilities. 

In a typical data center, a ratio of 40–50% of traditional HDD and 
solid-state drive (SSD) is usually available to store data (Shehabi et al., 
2018). Currently, SSDs and HDDs serve very distinct purposes, since 
SDDs are generally used on "computing" servers and HDDs on "storage" 
servers. Each year, the energy usage of SSD drives decreases by roughly 
2.3%, while that of HDD drives decreases by 5.3% (Shehabi et al., 2018). 
In 2016, SSDs began with an average of 6.0 Watt (W) per TB drive, 
whereas HDDs began with an average of 8.1 W per TB drive (Shehabi 
et al., 2018). Annually, the number of SSDs increases by 9.5%, while 
HDDs decline by 2.9%. A study by (Zhang and Yang, 2021) reported 
27.8 kWh of power consumption per TB of data for information tech
nology (IT) storage devices, whereas data centers utilized 46.33 kWh per 
TB of data per year, resulting in approximately 35 kg of CO2 emissions 
per TB of data per year. 

Data storage demand is expected to rise from 118.93, 235.63, and 
309.14 Exabytes (EB) in 2016 to 368.47, 5023.40, and 24,840.67 EB in 
2030 for traditional, cloud, and hyperscale data centers, respectively 
(Koot and Wijnhoven, 2021). Due to the deployment of more energy 
efficient SSD devices, this sudden increase in storage demand is antici
pated to have a negligible impact on escalating storage device electricity 
demand in the near future. In contrast, a study by (Koot and Wijnhoven, 
2021) claimed storage-related power consumption is expected to fall 
from 18.33 TWh in 2016 to 15.23 TWh in 2030, justified by the fact that 
demand will continue to be offset by ongoing efficiency improvements. 
Furthermore, hyperscale data centers are projected to consume the 
majority of storage-related energy due to global workload allocations. In 
2030, hyperscale data centers are expected to utilize 12.72 TWh, 
compared to 0.13 and 2.39 TWh for traditional and cloud data centers, 
respectively (Koot and Wijnhoven, 2021). This indicates that data 
storage still accounts for a large fraction of total energy consumption 
with disk drives being the primary source of storage energy use. 

Storing a massive amount of dark data on this type of storage is 
currently wasting a significant amount of energy, mostly powered by 
non-renewable resources, to run storage devices and associated storage 
management systems and thus increase CO2 emissions. This, in addition 
to the heat produced as a by-product of production, traffic, and storage, 
necessitates cooling. Storage drives power demand could increase to 
19% of overall data center energy consumption if storage cooling share 
infrastructure is taken into account (Backup Works Storage Solutions, 
2020). When compared to general compute loads, write operations in 
data center storage systems can be somewhat energy intensive due to the 
redundant array of inexpensive disks (RAID) setups that require the 
calculation of parity checks and other calculations. The energy con
sumption once written to disk is, of course, difficult to determine. It 
depends on whether the end user pays for the drives to be online and 
spinning up, or whether they allow the dark data to be placed in a 

Fig. 4. Process of dark unstructured data creation.  

Fig. 5. Worldwide cumulative data storage requirements.  
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glacier-like environment where it can be retrieved but with high latency 
(because the disks are shut down). 

Thus, for large-scale data centers and cloud providers, finding ways 
to use electricity more effectively is critical to make business and 
reducing bills. Given the size of these facilities, seemingly minor mod
ifications can have a significant impact on the cost of environmental 
issues and carbon footprint. Although cleaner energy sources are an 
essential area of focus for green data centers, reducing waste and opti
mizing resources can also play a big part in the progress of the green data 
center. Combining improved energy efficiency with greener energy 
sources yields the best results in terms of cost savings and carbon 
emissions reduction. Due to low-cost storage media, minimum power 
consumption, and low cooling requirements, today’s highly improved 
magnetic tape has witnessed a resurgence in the marketplace in recent 
years (Cooke et al., 2021). The tape storage does not use any electricity 
when not in use (although, so does an HDD when you power it off) and 
has low embodied energy per tape. However, the main cons of the tape 
storage medium are extremely slow if the tape is in the drive, if the tape 
needs to be loaded by a robot, and if the tape requires to be loaded by a 
human, maybe from a distant warehouse. 

3.4. Contextualizing digitalization through a sustainability lens 

Maintaining large amounts of data or transferring them over a 
network or the cloud can use a lot of energy and result in a significant 
environmental footprint. However, storage and processing requirements 
can be reduced by eliminating data storage and flows that are no longer 
required. Progressive firms who are committed to improving their sus
tainability are, according to an analysis conducted by (Goodwin, 2019), 
projected to reassess their current data storage techniques and explore 
using more modern magnetic tape as a viable option for achieving 
long-term success. For regulatory and governance reasons, analytics, 
and other use cases, businesses may choose to keep dark unstructured 
data on nearline media or the "active archive" tier of storage. This in
formation does not require the use of disk drives, which require 
continuous power and cooling to operate. This means that while the data 
is not in use, it is still available for productive usage and consumes 
minimum processing power and environmental resources. 

Given the emphasis on sustainability and the massive quantities of 
data storage devices needed to store the growing amounts of data in the 
coming years, organizations have an opportunity to decarbonize, 
improve sustainability, and lower the costs by migrating less frequently 
visited data from HDD-based storage to sophisticated tape storage sys
tems. As a hypothetical example, research by (Johns, 2021) looked at 
the impact of storing 100 PB of data for ten years on the storage media. 
An active archive that migrated 60% of the HDD resident data to tape 
storage decreased CO2 emissions by 57% and electronic waste by 48% 
when compared to HDD-based storage, as illustrated in Fig. 6. However, 
if all the data is presumed to be dark and moved to tape, CO2 emissions 
and e-waste are decreased by 95% and 80%, respectively. It is also worth 

noting that this research only looked at emissions from storage media, 
not the IT infrastructure that supports them. 

When deciding on data storage infrastructure, the long-term impact 
on energy usage should be taken into account. International Data Cor
poration (IDC) conducted in-depth research and constructed a scenario 
to better understand the impact that tape storage could have on CO2 
emissions if more data is shifted to tape storage. Shifting to tape can 
result in a large, observable change in energy resource consumption 
when considering overall resource usage over the life term of data 
storage (Goodwin, 2019). The reductions in energy costs, as well as the 
reduction in CO2 emissions, are compelling reasons to consider 
expanding the usage of tape storage. Data migration has an immediate 
positive impact, resulting in lower electricity consumption. The annual 
CO2 reduction by 2030 is 43.7% if an increasing proportion of data is 
considered to be archival, with 80 percent of archived data kept on 
enterprise storage systems and 57% of replicated data transferred to tape 
(Cooke et al., 2021). This indicates that between 2019 and 2030, 664 MT 
of CO2 emissions might be avoided. This quantity is equal to the annual 
greenhouse gas emissions from 144 million passenger automobiles or 
the annual energy consumption of 80 million houses. 

Furthermore, the growing demand for data storage and server 
cooling has prompted some global cloud infrastructure to be migrated to 
temperate climate regions such as Sweden, Iceland, and Ireland, which 
rely on natural cooling to reduce heat instead of using high-powered 
cooling equipment all the time (Vonderau, 2019). Data migration re
fers to the process of transferring data from one place, one format, or one 
application to another as a result of introducing new systems or loca
tions for the data. The process involves data profiling, data cleaning, 
data validation, and the ongoing data quality assurance process in the 
destination system. Data migrations are widely deployed nowadays as 
businesses switch from on-premises infrastructure and applications to 
cloud-based storage and apps in an effort to optimize or transform their 
business (Maniah et al., 2022). 

Migrating a large volume of data between different geographical 
locations, for the purpose of environmental footprint reduction, sounds 
simple in theory, but the approach does not always work as many 
countries legislate that their citizens’ data must be stored domestically 
(Ali and Osmanaj, 2020). Furthermore, due to data gravity, data 
migration has been perceived as a challenge and a risk. Even though the 
aspect of data gravity has been around for a while, the dilemma is 
becoming more noticeable as data migrates to cloud infrastructures 
(Laurent et al., 2020). Data gravity is a metaphor that illustrates how 
data attracts other data, how data is integrated into a business, and how 
data becomes more tailored over time. Gartner advises "disentangling" 
data and applications as a way to combat data gravity and shift apps and 
data to more beneficial locations (Gartner, 2017). Finally, transferring 
unstructured data is one of the most difficult challenges that businesses 
will face when migrating their data to the cloud. The challenge with 
migrating unstructured data is that most public cloud providers do not 
prioritize unstructured data migration, instead focusing on the accessi
bility and scalability of critical data. 

4. Methodology to assess environmental footprint of data 
storage 

This subsection presents the methodology deployed to identify 
global environmental footprints associated with different types of data 
storage. Some of the earliest projections of the world’s CO2 emissions 
(The Climate Group, 2018) and energy consumption (Bordage, 2019) 
were based on imprecise, vague, and out-of-date data and lacked the 
transparency necessary to be relied upon. Malmodin and Lunden 
deployed the publicly available datasets from the ICT industries to es
timate the carbon footprint of each device connected to a data center 
(Malmodin and Lundén, 2018). The analysis is based on a broad dataset 
that incorporates primary and secondary data for operational energy 
usage and life cycle CO2 for the covered sub-sectors. Belkhir and Fig. 6. Ten years 100 PB of data transferring to tape storage.  
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Elmeligi were built on this while estimating the annual lifecycle foot
print for each desktop, including data centers and networking equip
ment, using the following quantities for each component of the ICT 
industry: production energy, component lifecycle, and annual energy 
consumption (Belkhir and Elmeligi, 2018). However, the main issue 
with these studies is that they assume that most electric energy is 
generated by fossil fuels, which is not the case in most 
renewable-dominant countries such as Brazil. This means that the 
electricity mix is an important consideration in addressing the actual 
carbon footprint of the ICT sectors, as most data center industries are 
still powered by nonrenewable resources (Obringer et al., 2021). This is 
because the power generation mix varies depending on the country’s 
strategy for approaching sustainability goals. Thus, the main objective of 
this study is to estimate the environmental footprint of data storage in 
some data center-dominant countries by using the global average elec
tricity mix and emission factors from various sources of electricity 
production. 

As shown in Fig. 7, two main steps are used to determine the envi
ronmental impact of the worldwide electric power generation mix, fol
lowed by calculating total storage energy usage. The first step elaborates 
on the analysis conducted by (Obringer et al., 2021), specifically looking 
at the global power generation mix in (kWh) from various conventional 
and renewable energy resources using the most recent global data for 
2020. The breakdown of the electricity mix by country (Ritchie and 
Roser, 2021), renewable power generation by technology (Bahar and 
Bojek, 2020), and accumulated data (Ember, 2021). These data are then 
utilized to determine carbon, water, and land footprints for each source 
of power generation (Obringer et al., 2021), (Ristic et al., 2019), and the 
total land use (Fritsche et al., 2017). It is worth noting that, in this phase, 
the overall environmental footprints of electric power sources are 
calculated using a range of truncated log-normal distribution (i.e., min, 
median, and max) values to bound the footprint of each component 
between the minimum and maximum values reported in the literature. 

In step II, global power generation data is used to determine the 
required energy consumption for data centers to keep a gigabyte of data 
storage alive in kWh/GB. Although research conducted by (Koot and 
Wijnhoven, 2021) estimated the worldwide data storage power con
sumption to be 18 TWh, the study did not define what is deemed within 
the scope of the estimates provided and the real storage energy re
quirements may be underestimated. For example, given that storage 
devices account for 11% (Shehabi et al., 2016) of total data center power 
consumption (i.e., 205 TWh) excluding their share of cooling infra
structure, the total energy usage of storage drives might be as high as 
22.55 TWh. Therefore, different from (Obringer et al., 2021), in this 
analysis, the required energy in kWh/GB values is calculated by dividing 
22.55 TWh by the total data storage capacity of 4.9 ZB, yielding 0.0046 

kWh for each GB data storage on a disc drive (Cooke et al., 2021). It is 
worth noting that a tape storage system with the same capacity uses only 
0.0006 kWh, meaning an 87% reduction in energy use (Backup Works 
Storage Solutions, 2020). The metric kWh/GB is then used to calculate 
the water and land footprints L/GB and cm2/GB, respectively, for 
various power generation types using a variety of water intensity L/kWh 
metrics and m2 of land coverage. This means that the scope of the 
analysis begins with a broad perspective of environmental footprint due 
to worldwide data storage capacity and progresses to the effect of 
accumulated data storage on the environment within each country in 
subsequent analysis. The supplementary file contains the complete 
computation techniques deployed to determine the figures in this 
research. 

The analysis is first performed assuming that all the data is stored on 
disk drives, considering power consumption determined in step II. In the 
second scenario, 80% of the data to be stored is designated as archival, 
with 43% of this data to be stored on business storage drives and 57% of 
replicate data to be migrated to tape storage (Vries and Stoll, 2021). 
Finally, the share of energy consumption due to dark, redundant, and 
crucial data storage is calculated from data available in (Veritas, 2015) 
and (Veritas, 2020), based on the premise that each data type represents 
54%, 32%, and 14% of the current global data storage, respectively. The 
carbon, water, and land footprint for each data type are computed based 
on the percentage of energy consumption to store these types of data 
including the avoided footprint due to shifting to tape storage. The same 
methodology is implemented to compute the energy required for data 
storage as well as the environmental footprints in some dominant 
countries based on the electric power generation mix of each country. 
Percentage values are used to determine the environmental impact of 
each country concerning global footprint values, which will be shown in 
the next section. 

5. Analysis and results 

Fig. 8 depicts the global environmental footprints of storing various 
data types. As demonstrated, the water footprint in the minimum and 
median scenarios is relatively small for all data storage classifications, 
which are less than 0.05 L/GB. These relatively tiny footprints are rather 
big compared to the massive amounts of multi-gigabyte data connected 
with Internet use. However, this figure has increased to nearly 2.44 L/ 
GB during the maximum scenario. When this number is further broken 
down, it can be seen that almost 54% of the total water footprints are 
due to dark data storage while 32% considered for redundant data which 
is around 0.78 L/GB followed by critical data storage of 0.34 L/GB 
which accounted for 14% of the total maximum water footprints. These 
results indicate that energy consumption of worldwide data storage 

Fig. 7. Methodology deployed to compute environmental footprint of data center storage devices.  
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would require about 77.13 GL of water in the median scenario. The 
water footprint attributable to dark data storage, redundant data, and 
critical structured data each account for 41.65, 24.68, and 10.79 GL, 
respectively, in the figure. 

Fig. 8 also reveals that in the minimum scenario, the land footprint 
due to data storage presents only a small amount of less than 0.045 cm2/ 
GB. However, this figure has increased significantly to 0.7 cm2/GB and 
1.25 cm2/GB during the median and maximum footprint scenarios. 
Meaning that in the median scenario total data storage results in an 
annual median land footprint of about 110.1 square kilometers (km2), 
with dark data accounting for 59.45 km2 followed by 35.23 and 15.41 
km2 due to redundant and critical data storage, respectively. 

Differently, the total carbon footprint due to data storage is signifi
cantly higher than water and land footprints. As shown, the carbon 
footprint due to data storage reaches nearly 1.73 g CO2/GB in the 
minimum scenario while this figure has raised to approximately 1.98 g 

Fig. 8. Minimum, median, and maximum CO2, water, and land footprints due 
to different data storage categories including cumulative and avoided footprints 
with tape storage. 

Fig. 9. Carbon, water, and land footprint deviations for various countries concerning the world median.  
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CO2/GB and 4.11 g CO2/GB during both the median and the maximum 
scenarios, respectively. These values are used to determine that world
wide data storage results in annual CO2 emissions of 8.49, 9.74, and 
20.15 MT during the minimum, median, and maximum scenarios, 
respectively. Breaking down these numbers, it is possible to identify that 
dark data alone is responsible for 5.26 MT of CO2 emission during the 
median scenario. Furthermore, redundant and critical data storage 
could result in 3.12 and 1.36 MT of CO2 emissions, respectively. It is 
worth noting that these figures are comparable to those found in a study 
conducted in 2015 (Veritas, 2015). 

Finally, as can be seen from the right side of Fig. 8, expanding the use 
of tape storage can positively affect sustainability goals and the impact 
can be recognized immediately with a significant reduction in CO2 from 
9.74 MT to 6.7 MT, water footprint from 77.13 GL to 53 GL, and land 
footprint from 110.1 km2 to 75 km2. This enhancement is due to the 
reduced electricity consumption while migrating data to tape storage 
devices. It is also worth noting that these figures exclude the impact of 
power consumption from cooling and infrastructure supporting storage 
data, implying that the impact of data migration to tape storage could be 
much larger when power consumption from cooling systems is factored 
in. Given the massive amounts of data on the horizon, businesses should 
assess whether they need all of it "live" and available, or whether some, if 
not all, can be stored as an archive in a tape environment. 

The analysis further examines how individual countries’ footprints 
compare to the total global footprints due to various data storage cate
gories. The top panel of Fig. 9 depicts variances in carbon footprint in a 
few data center dominant countries compared to overall world calcu
lations, while the middle and bottom graphs show comparable calcu
lations for water and land footprints. As shown, in terms of the 
environmental footprints of an average unit of energy needed for storing 
dark data, some countries perform better than others due to differences 
in the energy mix in 2020. As an example, the carbon footprint of total 
data storage in the median scenario in the UK is roughly 50% lower than 
the global median, while the water footprint and land footprints are 
nearly 50% and 300% higher than the global median, respectively. The 
carbon footprint has declined marginally compared with those obtained 
by (Obringer et al., 2021) for the year 2018, but the water and land 
footprints have increased slightly. This is because the total electricity 
generation in the UK fell by 3.6% between 2019 and 2020 (Statistics, 
2021), while demand for data center usage has increased by 20% due to 
the COVID19 pandemic’s complete lockdown (Kang et al., 2020). The 
share of electricity produced by coal, gas, and nuclear fell by 0.3%, 5%, 
and 1.3%, respectively. This enabled higher power generation from re
newables, which climbed from 36.9% to 43.1%. 

Due to the low level of renewable energy in the Netherlands (i.e., 
25%), the median carbon footprint was nearly 100% higher than the 
global median. Similarly, the land footprint was substantially higher 
than the world median, while the water footprint remains close to the 
world median. In Ireland, Switzerland, and Brazil, on the other hand, the 
share of renewable power generation accounted for 40.7%, 65.1%, and 
84.3% in 2020, respectively. Therefore, it is obvious that the carbon 
footprint of these countries is significantly lower than the world median 
values. Instead, the water footprint of storing data in Brazil is 214% 
higher than the global median. The country obtained more than 64% of 
its electricity from hydropower plants, resulting in a higher water 
footprint and lower carbon footprint compared to other countries. 
Indeed, hydropower plants use more water than conventional power 
plants during the electricity generation process. Furthermore, the water 
from a hydro station is basically clean and can be used downstream, 
which is not the same as foul water from an industrial process. Clearly, 
these differences emphasize the influence of diverse energy mixes on the 
overall footprints of the data center as the higher percentage of 
renewable power generation leads to smaller environmental footprints. 

A closer inspection of these graphs reveals that the share of the 
environmental footprint due to various data storage options fluctuates 
significantly concerning the world median scenario. For instance, South 

Africa’s carbon footprint resulting from overall data storage is 67% 
greater than the worldwide median, while its dark data storage deviance 
is 79.6% higher. This is followed by redundant and critical data storage, 
both of which are 56% and 43% greater than the global median, 
respectively. Dark, redundant, and critical data storage, however, have 
smaller water and land footprints than the global median, with − 56.9%, 
− 62.3%, and − 65.6%, respectively. Turning now to the UK, Germany, 
and Italy, it is obvious that dark data storage has significantly larger 
water and land footprints than the worldwide median when compared to 
redundant and critical data footprints. These differences highlight the 
impact of the different shares of dark, redundant, and critical data 
storage in each country on the overall storage footprint of data centers. 
When the UK and Ireland are compared, the results demonstrate that the 
UK has a significantly larger land footprint than Ireland. This is mainly 
because the UK produced more than 46 TWh of its electricity from hydro 
and bioenergy in 2020, which are among the main sources of electricity 
that result in large land footprints (Holmatov et al., 2019). However, 
during the same year, these sources provided less than 2 TWh of Ire
land’s electricity. 

Dark data, for example, is expected to account for about 59% of total 
data storage in the UK, while redundant and crucial data account for 
27% and 14%, respectively (Veritas, 2015). Meanwhile, France has one 
of the highest percentages of clean and identifiable business critical and 
redundant data storage, accounting for 22% and 22% of total data 
storage, while dark data is only 56% (Veritas, 2015). Finally, smaller 
countries like Switzerland fare better in dark data, accounting for only 
39% of overall data storage, followed by 44% redundant data and 17% 
vital data (Veritas, 2015). Comparing the disparities between data 
storage footprints not only illustrates the trade-off between different 
sources of power generation but also depicts the importance of evalu
ating many environmental footprints for storing each data type simul
taneously. This is different from the conventional practice of focusing 
solely on the carbon footprint of the complete data center. 

6. Discussions and recommendations 

Global warming is a serious challenge. Governments are applying 
new, more expensive reporting requirements and regulations, while 
consumers prefer more robust government policies that preserve the 
environment. To address sustainability, companies are introducing a 
number of programs and efforts to better understand and manage the 
impact of their activities on the environment throughout their lifecycles. 
Firms can choose from a variety of different alternative projects to tackle 
and conform to these sustainability issues, which will vary depending on 
the sector and business. The perfect sustainability program, on the other 
hand, will drastically reduce carbon emissions, minimize a product’s 
environmental impact, save costs, and be simple to implement. One of 
these solutions is to eliminate dark data and shift regularly visited 
archive data from the disc to tape storage, especially for organizations 
with a considerable amount of stored data. To take advantage of this 
possibility, two core recommendations arise from our analysis con
cerning the environmental impacts associated with holding dark data 
and Internet sustainability more generally. 

First, businesses and data centers firms can start to make a major 
difference by simply taking control of data storage, assessing the storage 
rules, and ensuring they are not retaining data that is no longer needed, 
as per Fig. 10. In fact, as far as the data center is concerned, the more 
data their customers store the better that is for business. However, this is 
a terrible thing as far as the climate is concerned, yet that is the business 
model they operate on. Eliminating data centers’ unstructured data 
improves regulatory compliance and lowers costs and helps mitigate 
emissions and safeguard the environment. Data centers must begin to 
improve their data management policies, utilize the correct technologies 
to identify which data adds value, and eliminate dark data from their 
data centers to avoid emissions spiraling out of control and avoid digital 
waste. Filtering dark data and removing unnecessary information should 
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become a moral responsibility for organizations worldwide. Although 
artificial intelligence is there for data cleaning, the problem needs more 
radical solutions such as notifying the public, the government, and the 
industry about the environmental concern of storing massive redundant 
and dark data. 

There are, however, ways to utilize less while rendering data centers 
more sustainable and, as a result, more competitive in the long run. But 
the question is how to archive data and why even we store never 
accessed again data? Perhaps international standards or national ap
proaches are needed to protect and archive sensitive and important data 
on modern tape storage devices. Adopting tape storage early enough is 
prudent if a business needs to save redundant data for a long period of 
time. It is evident that if enough businesses around the world adopted 
this policy, the environmental impact would be significant. Considering 
the prevailing events and increased focus on sustainability now is the 
best time to review IT data storage policies and migrate infrequently 
viewed data to contemporary tape storage or eliminate them entirely. IT 
executives should also work with other business stakeholders to create 
data quality programs that are efficient and sustainable while achieving 
intended outcomes. 

Data centers are not really responsible for any of this though, it is 
their customers who need to improve their data management policies. 
Thus, the second critical step in avoiding an irreversible path to an 
unsustainable digital world is for society to recognize the power of 
collective action in reducing the environmental impact of holding dark 
data. People’s widespread adoption of environmentally responsible 
online conduct is vital for preventing climate change and maintaining 
long-term sustainability. Making Internet users aware of the costs of 
online acts and the advantages of making tiny behavioral changes 
through information campaigns, behavioral nudges, and other means is 
crucial to fostering sustainable digital behavior. As cloud storage is so 
cheap and widely available, consumers play a role in storing thousands 
of films and digital photographs that will never be viewed. In tandem, 
people should be aware of emails, instant messages, documents, pre
sentations, and spreadsheet that will never be read and lose track of 
what have been saved along the way. Small steps like removing emails 
and unneeded content on cloud-based storage services, unsubscribing 
from email lists, and turning off videos during online meetings can help 
lessen the environmental impact of Internet use. A tiny action like taking 
a photo with a smartphone and posting it on social media generates two 
types of dark data: the post and the image itself and the metadata around 
it. Essentially, the metadata is basically trivial compared to the volume 
of data in the image itself. It is worth stating, however, that the metadata 
is essentially insignificant in comparison to the abundance of data in the 
image itself. Presently people are being encouraged to upload and share 
stuff constantly so that it creates data for advertising algorithms to target 
them with, and also feeds into other machine learning projects, etc. 
However, for the sake of the environment, businesses and people 
worldwide must manage their data daily in order to avoid creating dark 
data in the first place or deleting it. 

7. Conclusions 

The data center sector consumes an increasing amount of land, 

electricity, water, and raw materials while also producing an increasing 
amount of waste. In summary, despite great improvements in data 
center efficiency, this sector is still responsible for a large amount of CO2 
emissions and contributes significantly to global water use and land 
footprints. This research showed that, if not adequately managed, the 
worldwide CO2 emissions resulting from the storing of dark data may 
exceed 5.26 MT per year. This is followed by water and land footprints 
each with 41.65 GL, and 59.45 km2, respectively. This study also 
examined the footprint deviations for various data center dominant 
countries concerning total global parameters. It showed that for a 
country like the United Kingdom when 43% of its electricity is produced 
from renewables in 2020, carbon footprint deviation might be modest 
compared to the entire global footprint, yet water and land footprints 
are considerable. Finally, as we increase reliance on data centers the 
problem with their environmental footprints will be more and more 
exposed, so it is critical that the prioritization process sieve out redun
dant and dark data in a sensitive manner so that we archive data sus
tainable for future generations. Even though data center owners and 
operators have made a significant effort to decarbonize their power 
consumption, they continue to rely heavily on fossil fuel power plants to 
keep data servers up, running, and cooling. Furthermore, power con
sumption is the problem, and the users are constantly encouraged to 
consume through a variety of IoT applications. Thus, future analysis 
should continue to examine the environmental impact due to powering 
different user applications. Future research should also assess the envi
ronmental impact of data storage on digital media against hard copies of 
printed material data archives. 
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